Bidimensional ensemble empirical mode decomposition of functional biomedical images taken during a contour integration task
نویسندگان
چکیده
In cognitive neuroscience, extracting characteristic textures and features from functional imaging modalities which could be useful in identifying particular cognitive states across different conditions is still an important field of study. This paper explores the potential of two-dimensional ensemble empirical mode decomposition (2DEEMD) to extract such textures, so-called bidimensional intrinsic mode functions (BIMFs), of functional biomedical images, especially functional magnetic resonance images (fMRI) taken while performing a contour integration task. To identify most informative textures, i. e. BIMFs, a support vector machine (SVM) as well as a random forest (RF) classifier is trained for two different stimulus/response conditions. Classification performance is used to estimate the discriminative power of extracted BIMFs. The latter are then analyzed according to their spatial distribution of brain activations related with contour integration. Results distinctly show the participation of frontal brain areas in contour integration. Employing features generated from textures represented by BIMFs exhibit superior classification performance when compared with a canonical general linear model (GLM) analysis employing statistical parametric mapping (SPM).
منابع مشابه
Bidimensional Ensemble Empirical mode Decomposition of Functional Biomedical Images
Positron emission tomography (PET) provides a functional imaging modality to detect signs of dementias in human brains. Two-dimensional empirical mode decomposition (2D-EMD) provides means to analyze such images. It extracts characteristic textures from these images which may be fed into powerful classifiers trained to group these textures into several classes depending on the problem at hand. ...
متن کاملEnsemble Empirical Mode Decomposition Analysis of EEG Data Collected during a Contour Integration Task
We discuss a data-driven analysis of EEG data recorded during a combined EEG/fMRI study of visual processing during a contour integration task. The analysis is based on an ensemble empirical mode decomposition (EEMD) and discusses characteristic features of event related modes (ERMs) resulting from the decomposition. We identify clear differences in certain ERMs in response to contour vs noncon...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملCombination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States
Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In t...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomed. Signal Proc. and Control
دوره 13 شماره
صفحات -
تاریخ انتشار 2014